

SmartStar[®] Cube[™]-E Series Mount and Telescopes (For 8500, 8502, 8503 and 8504)

Instruction Manual

1. Descripción general de la serie SmarStar[®] CubeTM-E

1.1. Características de la serie SmartStar® CubeTM-E

Montura Alt-Azimuth - The Cube ™

Nuestro exclusivo Grab 'N Go Alt-Azimuth Mount, también conocido como The Cube, calificado como 4 estrellas por Sky & Telescope Magazine es una de las unidades más funcionales y flexibles del mercado. Ambos ejes los motores están integrados en una pequeña unidad única que es universalmente compatible con todos los telescopios que utilizan una conexión de cola de milano tipo vixen. El controlador de mano Go2Nova® en cada montaje Cube es fácil para usar con menús para planetas, estrellas, nebulosas y constelaciones. Y con solo 12 lbs. usted puede ¡Llévelarlo a cualquier parte y obtenga un seguimiento preciso! También tiene una gran pantalla LCD con más líneas de contenido en comparación con la competencia (para que no tenga que seguir desplazándose para leer la pantalla). El controlador está diseñado para que pueda configurar fácilmente su telescopio y seleccionar dónde desea ir. El revolucionario sistema de control computarizado GOTONOVA® es uno de los sistemas de seguimiento automatizado tecnológicamente avanzado disponible en el mercado hoy. Existen sin "puntos muertos", por lo que puede apuntar su telescopio a cualquier lugar sobre el horizonte, mientras que, otras monturas bloquean el tubo del telescopio en ciertos puntos de rotación. Este soporte puede ser operado por 8 pilas AA o un adaptador de alimentación de CA / CC externo, lo convierte en una idea de montaje de viaje.

Compatible con la mayoría de los tubos del mercado.

Telescopios y cámaras con conexión de cola de milano tipo Vixen y un peso de hasta 7 libras. (incluidos los accesorios) son compatibles con el soporte CubeTM GOTO Altazimuth Mount. (Si no lo hace tenga una conexión de cola de milano: conecte su OTA con anillos de montaje y cola de milano disponibles en su tienda local de telescopios o el fabricante de OTA). Póngase en contacto con iOptron para obtener asesoramiento experto sobre problemas de compatibilidad

Sistema de control computarizado GOTONOVA®

El revolucionario sistema de control computarizado GOTONOVA[®] es, con mucho, el sistema de seguimiento y goto automatizado tecnológicamente avanzado disponible en el mercado hoy en día. Con su gran base de datos de objetos celestes, que incluye todas las galaxias, nebulosas y estrellas conocidas cúmulos, sin mencionar los planetas, el sol y la luna, podrás disfrutar de mirar las estrellas con simplemente presione un botón. Ambos motores de eje están integrados en una pequeña unidad individual con codificadores ópticos que proporcionan GOTO y seguimiento preciso. El sistema de control también le permite girar el telescopio a diferentes velocidades de conducción, manteniendo el objeto dentro del visor del telescopio como siempre que lo desees.

El controlador más fácil de entender del mercado.

El controlador de mano GoToNova[®] es mucho más fácil de usar que otros productos similares. El controlador de mano es más intuitivo con categorías de menú mejor organizadas. También tiene una pantalla LCD más grande. La pantalla con más líneas de contenido en comparación con la competencia. Usando el controlador y su gran pantalla LCD, puede configurar fácilmente su telescopio y seleccionar dónde quiero ir.

Simplemente un mejor trípode

Hecho de acero inoxidable resistente de 1.25 pulgadas, el trípode Cube es resistente pero liviano, y le da al usuario una estabilidad incomparable durante la operación. Las juntas de construcción sólida mantienen su monte bloqueado de forma segura.

"Esto parece una buena idea, nos preguntamos por qué alguien no lo pensó antes. Los iOptron Cube es una montura independiente de azimut que agregará Ir a apuntar y seguimiento sideral a casi cualquier telescopio pequeño con un conector de cola de milano estilo Vixen" Editor Gary Seronik de "Sky and Telescope"

1.2. Contenido del paquete

Montaje 1X SmartStar[®] CubeTM-E 1 controlador de mano GoToNova 1x cable de controlador 1X trípode 1x adaptador de CA con cable Para el modelo 8502 (SmartStar[®] Cube-E R80)

1X telescopio refractor de 80mm 2 oculares (10mm y 25mm) 1 lente Barlow 1X 45º diagonal erecta

Para el modelo 8504 (SmartStar® Cube-E MC90)

1X telescopio reflector Maksutov-Cassegrain de 90 mm

2 oculares (10 mm y 25 mm)

1X buscador de puntos rojos

1X 45º diagonal

1.3. Términos de montaje

Figura 1. Montaje en cubo y términos de montaje del telescopio

- 1. Tubo telescopio
- 2. Tornillo de bloqueo de cola de milano
- 3. Controlador manual
- 4. Bloqueo de altitud
- 5. Monte
- 6. Tornillo de bloqueo azimutal
- 7. trípode

1.4. Controlador manual GoToNova® 8405

Figura 2. Controlador manual GoToNova® 8405

El controlador manual GoToNova[®] 8405 (HC) es el controlador estándar para un SmartStar[®] Telescopio CubeTM-E GOTO, como se muestra en la Figura 2.

Descripción clave

MENÚ: Presione "MENÚ" para ingresar al Menú Principal.

ATRÁS: retrocede a la pantalla anterior o finaliza / cancela la operación actual, como

girando.

ENTER: Confirme una entrada, vaya al siguiente menú, seleccione una opción, gire el telescopio a un

objeto seleccionado, o detener / iniciar seguimiento.

Flecha (▲ ▼ ► ◄): presione los botones ▲ ▼ para mover un telescopio a lo largo de la dirección de altitud,

► ◄ para mover un telescopio a lo largo de la dirección azimutal. Navega por el menú o mueve el cursor en el menú operativo.

Tecla SPEED: para seleccionar una velocidad de rotación manual (2X, 8X, 64X, 256X y MAX)

Tecla de luz (\mathfrak{O}): enciende / apaga la luz roja de lectura del LED en la parte posterior del controlador.

Tecla de ayuda: para obtener ayuda y mostrar más información sobre un objeto.

Puerto HBX (handbox): conecte el HC al soporte SmartStar usando un cable 6P4C RJ11.

1.4.1. La pantalla LCD

El 8405 HC consta de una gran pantalla LCD de 4 líneas, que muestra toda la información como se muestra en la Figura 3. La interfaz de usuario es simple y fácil de leer.

Figura 3. Pantalla de información LCD del controlador de mano 8405

1. Nombre del objetivo (target Name): muestra el nombre del objetivo al que apunta actualmente el telescopio.

Posición de estacionamiento(park): una posición predeterminada cuando el soporte está encendido, es decir, el telescopio está señaló el cenit (la lectura de altitud es de 90º) y el monte está orientado al sur (lectura de acimut es 180º);

Un nombre de objeto, como "Mercurio" o "Galaxia de Andrómeda": nombre de la estrella u objeto celeste actualmente que actualmente está girando, goto o rastreando;

LandMark #: el telescopio funciona en modo Land y apunta a una marca de tierra #

(nota: el telescopio no sigue en modo terrestre)

Posición del usuario: el montaje se ha girado manualmente a un objeto; o un R.A y DEC el valor de un objeto se ingresó manualmente; o se ha pasado por un proceso de rastreo o goto interrumpido.

2. Estado del soporte / GPS: muestra el estado actual del soporte. Si la montura está equipada con un GPS (dependiendo del modelo)

(receptor GPS integrado o módulo GPS externo), también indica el estado del GPS, cuando la montura está encendido.

Detener (estado de montaje): el telescopio está en una posición de espera;

Giro (estado de montaje): el telescopio gira manualmente hacia el objetivo;

Goto (estado de montaje): el telescopio va hacia el objetivo;

Rastrear (estado de montaje): el telescopio está rastreando un objetivo;

Alinear (estado de montaje): el telescopio está en modo de alineación;

G-ON (estado del GPS): el GPS está activado e intenta bloquearse en un satélite (para montar con GPS receptor);

G-OK (estado del GPS): la conexión entre el receptor GPS y los satélites ha sido establecido (este estado será reemplazado por Mount Status después de unos minutos).

3. R: Ascensión recta del telescopio, o R.A.

- 4. D: declinación del telescopio, o DEC.
- 5. A: Altitud del telescopio (el cenit es 90º).
- 6. Z: Acimut del telescopio (norte es 0º, este 90º, sur 180º y oeste 270º).

7. Fecha y hora local: muestra la hora local en un formato de AA-MM-DD HH: MM: SS.

8. Velocidad de rotación: Hay 5 velocidades: 2X, 8X, 64X, 256X (1º / seg), MAX (~ 4º / seg). presione el Tecla VELOCIDAD (SPEED) para cambiar la velocidad mientras gira.

9. Hora actual: muestra la hora local en un formato de HH: MM: SS.

1.4.2. Revise la batería

El controlador de mano tiene un reloj de tiempo real (RTC) que debe mostrar la hora correcta cada vez que se enciende la montura. Si la hora es incorrecta, verifique la batería dentro del controlador de mano y reemplazarlo si es necesario. La batería es una batería de 3V, botón CR1220.

2. Comience

2.1. Configurar SmartStar® Cube Mount

PASO 1. Configuración del trípode

1. Extienda las patas del trípode a la extensión completa y cierre las perillas.

2. Coloque el trípode en posición vertical. Luego presione hacia abajo para bloquear los brazos centrales en su lugar.

3. Coloque la bandeja en la perilla central y gire la bandeja hasta que encaje en su lugar. (La bandeja girará debajo de la perilla central)

4. Use un nivel adicional para nivelar la parte superior del trípode.

PASO 2 Fije el montaje del cubo

Coloque el soporte en la parte superior del cabezal del trípode y fíjelo con el tornillo de bloqueo azimutal.

PASO 3. Instale las baterías

El soporte puede funcionar con 8 baterías AA o con un adaptador de CA / CC (PASO 5). A instale las baterías, levante la tapa de la batería. Saque con cuidado el soporte de la batería del compartimiento. Asegúrese de no desconectar accidentalmente los cables. Inserte 8 baterías AA (no incluidas) en el soporte de la batería, con las polaridades coinciden con las diagrama en el titular. Vuelva a colocar el soporte en el compartimento de la batería y vuelva a colocar el tapa.

El soporte de la batería solo cabe en el compartimento de la batería en una dirección. Si no puede encajar, gire el soporte 90 grados y asegúrese de que los cables no bloqueen el soporte. No mezclar baterías nuevas con las viejas.

PASO 4. Adjunte y equilibre un telescopio

El soporte tiene un soporte de cola de milano tipo Vixen. Acepta cualquier telescopio (bajo carga útil límite) con una barra de cola de milano Vixen. Suelte la perilla de la cola de milano. Deslice la barra de cola de milano del telescopio en la silla de cola de milano. Vuelva a apretar la perilla de bloqueo de cola de milano.

Conecte todos los accesorios al telescopio. Afloje el bloqueo de altitud un poco, con otro mano sostenga el alcance. Verifique el equilibrio del soporte. Si el extremo del ocular del telescopio tiende a moverse hacia abajo, mover el alcance hacia adelante. Si el extremo del objetivo del telescopio (lado frontal) tiende a moverse hacia abajo, mueva la mira hacia atrás. Puede dejar el telescopio un poco pesado por delante.

PASO 5. Conecte los cables

Conecte el controlador de mano GoToNova 8405 en cualquiera de los dos puertos HBX del monte usando el cable de control en espiral. Enchufe la fuente de alimentación de 12 V CC a la toma de corriente del panel de montaje, si usa una fuente de alimentación externa para alimentar el soporte. El LED rojo se encenderá cuando El interruptor de encendido está encendido.

PASO 6. Nivelacion el soporte

La nivelación es crítica para un buen GOTO y precisión de seguimiento.

Para nivelar la montura:

1. Localice la burbuja de aire dentro del nivel circular del ojo de buey, como se muestra a la izquierda. Ajuste las patas del trípode para mover la burbuja dentro del círculo pequeño. Siempre es útil si nivelas el trípode primero cuando lo configura.

2. Encienda el soporte. Presione el botón "9" para cambiar la velocidad de rotacióna MAX.

3. Gire el montaje 90 ° incremental presionando el botón ►
o ◄ para verificar si la burbuja permanece dentro del círculo. Si sale del círculo, ajusta las piernas para traerlo de vuelta.

- 4. Gire el soporte 360 ° en azimut para asegurarse de que el soporte esté nivelado.
- 5. Apriete / bloquee completamente las patas del trípode.

Si la burbuja no se queda dentro del círculo pequeño, es posible que deba calibrar el nivel asegúrese de que permanezca en la misma posición mientras gira el soporte. Marcar la nueva posición de burbuja como una posición central calibrada. También se recomienda usar niveladores adicionales (como un nivel de carpintero) para asegurar una nivelación precisa.

PASO 7. Configurar la posición inicial

El punto de inicio de una montura Cube es la posición de estacionamiento. Para una operación altazimuth (AA) modo, su altitud es 90º00'00 "y el acimut es 180º00'00", lo que significa que la marca "SUR" es apuntando hacia el sur y el telescopio apunta directamente hacia el cenit.

Nota: Siempre puede mejorar la posición inicial más adelante durante "One Star Align" o "Syncapuntar".

Para establecer la posición de estacionamiento (después de nivelar la montura), puede:

1. Alinee la montura hacia el sur liberando la cerradura de acimut medio gire y gire la montura de modo que la marca sur quede hacia el sur, ayudándose de una brújula. Es posible que deba tomar la declinación magnética en cuenta (verdadero sur en lugar de sur magnético). Desbloquee la altitud bloquee y gire el telescopio para apuntar directamente hacia el Zenith. Poner un nivel de carpintero en la parte superior del tubo óptico puede ayudar. Asegúrate de que la montura está nivelada luego encienda la montura.

2. Encienda el soporte de montaje. Presione el botón SPEED para cambiar

la velocidad de rotación a MAX. Gire la marca SUR hacia el sur usando

Se necesita el botón ► o ◄ con la ayuda de una brújula. Puedes

Es necesario tener en cuenta la declinación magnética (sur verdadero en lugar de

sur magnético.) Gire el telescopio para apuntar al cenit usando 🔺 o

▼ botones. Luego apague el soporte y vuelva a encenderlo.

Cualquier discrepancia de Posición Cero será corregida por alineación de estrellas o sincronización de objetivos operación posterior.

PASO 8. Configuración del controlador manual

Tiempo y configuración del sitio de observacion

Esto es crítico para asegurar que el telescopio apunte a la dirección correcta. Presione botón MENÚ. En el menú principal, desplácese hacia abajo y seleccione "Configurar controlador" (Set Up Controller)

```
Select and slew
Land Objects
Sync. to Target
Set Up Controller
```

Presione ENTER. Seleccione "Configurar hora y sitio"

Set Up Time and Site Set Display Info Set Key Beep Set Azi Work Mode

Presione ENTER. La pantalla Establecer hora local mostrará:

```
Set Local Time:
2009-06-01 11:55:09
DaylightTime Saving Y
```

Establecer hora local:

Use la tecla ◀ o ► para mover el cursor y el botón ▲ o ▼ para cambiar los números.

Establecer horario de verano:

Use el botón \blacktriangle o \blacktriangledown para alternar el horario de verano entre Y y N. Presione ENTRAR

para ir a la pantalla Configurar información del sitio.

Establecer coordenadas del sitio:

"W / E" significa hemisferio occidental / oriental; "N / S" significa hemisferio norte / sur;

"D" significa grado; "M" significa minuto; y "s" significa segundo.

Use la tecla \triangleleft o \triangleright para mover el cursor y el botón \blacktriangle o \triangledown para cambiar los números o alternar entre "W" y "E", "N" y "S".

La información de coordenadas del sitio se puede encontrar desde su teléfono celular, navegador GPS, Mapa de Google u otro sitio web en línea.

Establecer zona horaria

Presione la tecla ◀ o ►. Mueva el cursor hacia la parte inferior de la pantalla para configurar la zona horaria.

información (sumar o restar 60 minutos por zona horaria). Ingrese los minutos "delante de" o "detrás" de

UT (tiempo universal). La diferencia de tiempo mínima es de 15 minutos. Para Chile se utiliza la zona horarira UTC-4, por lo que debe ingresar los datos 240 Min. behind UT (240 minutos delante del UT Tiempo universa).

2.2. Familiarícese con el telescopio

2.2.1. Ensamble el telescopio

R80 - Telescopio refractor de 80 mm.

Insertar diagonal de 45^o: insertar la diagonal en el orificio del lado del telescopio. Apriete los tornillos para una sensación firme solamente.

Inserte el ocular: deslice el ocular en el extremo abierto de la diagonal Apriete los tornillos para una sensación firme solamente. Retire la tapa del otro extremo del tubo óptico

MC90 - 90mm Maksutov-Cassegrain Telescope

Instale Diagonal atornillándolo en el extremo posterior del telescopio. Puede ajustar la posición de la diagonal por aflojando el enhebrador de giro libre en la diagonal.

Instale el Finderscope deslizando la placa de cola de milano sobre la manga (ver flecha) y apretar el tornillo lateral. El ocular se puede colocar en el extremo del telescopio o en el lado (ver el siguiente paso).

Asegure el ocular usando el tornillo lateral. Use la perilla de enfoque para ajustar el enfoque.

Esta imagen muestra el ocular en el lateral. Sacar la Tapa protectora para insertar el ocular. La diagonal no se utiliza en vista lateral.

Use el interruptor de volteo para voltear el espejo interno para ver desde el lado o el final del del telescopio para utilizar la diagonal

2.2.2. Usa el telescopio

Orientación de imagen

La orientación de la imagen cambia según cómo se inserte el ocular en el telescopio. Cuando se usa la diagonal de la estrella (la diagonal del espejo de 90^o), la imagen está del lado derecho, pero invertido de izquierda a derecha (es decir, imagen reflejada). Si inserta el ocular directamente en el visual hacia atrás (es decir, sin la diagonal de la estrella), la imagen está al revés y se invierte de izquierda a derecha (es decir, invertido). Esto es normal para el diseño del refractor.

Para la observación terrestre, como la marca de tierra o la observación de aves, puede comprar una opción diagonal vertical de 45º para tener una imagen correcta de su ocular.

Seleccione un ocular

La ampliación de un telescopio se define por las distancias focales del telescopio y la ocular Se puede usar una fórmula para determinar el poder de cada ocular: Telescopio focal longitud dividida por la distancia focal del ocular es igual a aumento. Por ejemplo, un telescopio R80 tiene una longitud focal de 400 mm. Si se usa un ocular de 25 mm, la ampliación será

400 mm ÷ 25 mm = 16X (aumento)

Si se desea un mayor aumento, puede solicitar oculares de mayor potencia. (Nota: a 25 mm El ocular de distancia focal tiene una potencia inferior a la de 10 mm.) Comience siempre con el ocular de menor potencia para ubicar fácilmente los objetos.

Enfoca el telescopio

Después de seleccionar el ocular deseado, apunte el tubo del telescopio hacia un objetivo terrestre al menos a 200 metros de distancia (por ejemplo, un poste de teléfono o un edificio). Extienda completamente el tubo de enfoque girando la perilla de enfoque. Mientras mira a través del ocular seleccionado, retraiga lentamente el tubo de enfoque girando el enfoque mando hasta que el objeto se enfoque.

Alineando el buscador

1. Mire a través del tubo del telescopio principal y establezca un objetivo bien definido (vea el enfoque sección del telescopio). Apriete todas las perillas de bloqueo (Ascensión recta, declinación, altitud, Acimut, etc.) para que no se altere el objetivo del telescopio.

2. Encienda el buscador de puntos rojos y mire a través de la ventana del buscador. Ajusta el punto rojo tornillos de alineación para centrar el punto rojo en el objeto.

3. Ahora, los objetos centrados en el buscador se mostrarán en el campo de visión del telescopio.

Mueva el telescopio usando el hand controller

Inserte 8 baterías AA nuevas en el soporte de la batería de montaje, o usando el adaptador de CA, Apriete todos los tornillos y trabas del trípode, el soporte y el telescopio. Mueva el interruptor ON / OFF de la montura para encender. Después de un pitido y la pantalla LCD muestra la pantalla de información, presione el número 9 para cambiar la velocidad de rotación a MAX.

Presione el botón ▲ ▼ ► o ◀ para mover el telescopio hacia ARRIBA, ABAJO, DERECHA o IZQUIERDA. Apunta y enfoca el telescopio a un objeto distante. Presione el botón de flecha mientras mira a través del ocular Presione un botón numérico para cambiar la velocidad, si el objeto se mueve demasiado rápido.

2.4. Alineación inicial de estrellas

Realice una simple alineación / sincronización de una estrella después de configurar el controlador de mano para corrija cualquier discrepancia en la orientación de la posición de estacionamiento y mejore la precisión de GOTO.

Para realizar "One Star Align", presione MENÚ => "Alinear" => "One Star Align" => ENTER. La pantalla mostrará una lista de objetos brillantes para que pueda seleccionar. Seleccione un objeto usando ▲ o ▼ las teclas. Luego presione ENTER. Después de que la montura se desplace hacia el objetivo, use las teclas de flecha para centrarlo en el ocular Luego presione ENTER. (Más detalles de alineación en 3.5)

Una forma alternativa es realizar "Sincronizar con el objetivo". Presione MENÚ => "Sincronizar. Apuntar", siga las instrucciones en pantalla para centrar la estrella y presione ENTER. Es posible que deba usar las teclas numéricas para cambiar la velocidad de rotación para facilitar el proceso de centrado.

2.5. Ir a La Luna y otras estrellas

Después de realizar estas configuraciones, el soporte está listo para GOTO y rastrear objetos. Uno de los objetos más comunes son la Luna.

Para girar a la Luna, presione MENÚ => "Seleccionar y girar" (Selec and Slew)=> "Planeta, Sol, luna " (solar sistema)=> Luna (moon)=> ENTER. El telescopio girará automáticamente hacia la Luna y se fijará en ella. Comenzará a seguir automáticamente una vez que se bloquee. Si la Luna no está centrada en su ocular, usa las teclas de flecha para centrar la Luna. Puede usar "Sincronizar con el objetivo" para mejorar el seguimiento. También puede seleccionar otros objetos celestes brillantes para comenzar, como Júpiter o Saturno.

2.6. Apaga la montura

Al finalizar la observación, mueva siempre la montura a la posición de estacionamiento. Si la montura no se ha movido del sitio de observación, no se necesita una configuración inicial cuando la montura se enciende la próxima vez. Para hacerlo, presione el MENU, desplácese hacia abajo hasta "Park Telescope" y presione ENTER. Apaga la corriente.

3. Funciones completas del controlador de mano GoToNova®

3.1. Giro a un objeto

Presione el botón MENÚ, en el menú principal, seleccione "Seleccionar y girar" (Selec and Slew). Seleccione un objeto que quisiera observar y presionar la tecla ENTER.

El controlador de mano GoToNova[®] 8405 tiene una base de datos compuesta por más de 14,000 objetos. • o \blacktriangleleft para mover el cursor y \blacktriangledown o \blacktriangle para cambiar el número. Indica el $\stackrel{\diamond}{-}$ objeto está por encima del horizonte, y $\stackrel{\overline{\diamond}}{\bullet}$ significa que está por debajo del horizonte. Solo los objetos de arriba se puede observar el horizonte. En algunos catálogos, esas estrellas debajo del horizonte pueden no mostrarse.

3.1.1. Planetas, Sol, Luna

Hay 9 objetos en el sistema solar.

3.1.2. Objetos de cielo profundo

Este menú incluye objetos fuera de nuestro sistema solar, como galaxias, cúmulos estelares, cuásares, nebulosas.

Objetos denominados Deepsky: consta de 137 objetos de cielo profundo con sus nombres comunes.

Habrá más información disponible presionando la tecla AYUDA. Una lista de cielo profundo llamado objetos también se adjunta en el Apéndice C.

Catálogo Messier: consta de los 110 objetos en el catálogo Messier. Más información será estar disponible presionando la tecla AYUDA.

Catálogo NGC: consta de 7840 objetos en el catálogo NGC. Use el botón ► o ◄ para mover el cursor y el botón ▼ o ▲ para cambiar el número.

3.1.3. Cometas

Contiene hasta 64 cometas. Esta base de datos es actualizable por el cliente.

3.1.4. Asteroides

Contiene hasta 64 asteroides. Esta base de datos es actualizable por el cliente.

3.1.5. Estrellas

Estrellas nombradas: consta de 191 estrellas con sus nombres comunes. Están listados

alfabéticamente. Se adjunta una lista en el Apéndice C.

Constelaciones: consta de 88 constelaciones modernas con sus nombres. Están listados

alfabéticamente. Se adjunta una lista en el Apéndice C.

Estrellas dobles: consta de 211 estrellas dobles. Se adjunta una lista en el Apéndice C.

SAO Bright Stars: consta de 5103 objetos brillantes del catálogo SAO con sus magnitudes mayor que 6.

3.1.6. Objetos RA y DEC JD2000 de usuario

Puede constar de hasta 256 objetos predefinidos por el usuario. Estos objetos necesitan ser ingresados antes de que puedan seleccionarse para la rotación (consulte 3.6.1 Usuario RA y DEC JD2000).

3.1.7. Introducir posición

Ir a un objetivo ingresando su R.A. y números DEC.

3.1.8. Lista de objetos para observar

Una lista de observación es una lista de sus objetos celestes favoritos en la base de datos. Puede ser seleccionado para girar. El usuario puede agregar, eliminar y explorar la lista de observación. (Consulte 3.7 Lista de observación).

3.1.9. Watch List Auto

Esta función establecerá que la montura se mueva automáticamente a todos los objetos enumerados en la Lista de observación en un intervalo de tiempo preestablecido. El intervalo de tiempo se puede configurar de 10 segundos a 1200 segundos por usando el botón ∇ o \blacktriangle .

3.2. Objetos de tierra

Se pueden almacenar hasta 4 sus objetos terrestres favoritos en el controlador de mano. Presione MENÚ, seleccione "Objetos de tierra" y presione ENTRAR, se mostrará la pantalla Objetos de tierra:

Goto saved	1 2 3 4
Save new	1 2 3 4
Input Coord.	1 2 3 4
A 10° 0.0′ Z 10°	0.0′

Ir a guardado (objeto terrestre):

Use el botón \triangledown o \blacktriangle para mover el cursor a la línea "Ir a guardado", use el botón \triangleright o \blacktriangleleft para objeto terrestre guardado y presione ENTER. La montura se desplazará automáticamente hacia el objetivo. Esta función solo funciona si se ha almacenado un objeto terrestre en la base de datos. Guardar nuevo (objetos de tierra) Use el botón \triangledown o \bigstar para mover el cursor a la línea "Guardar nueva", use el botón \triangleright o \blacktriangleleft para seleccionar el número de objeto que desea almacenar y presione ENTRAR. Se mostrará una pantalla de referencia:

Goto saved	1 2 3 4
Save new	1 2 3 4
Input Coord.	1 2 3 4
A 10° 0.0′ Z 10°	0.0′

Use las teclas $\blacktriangleleft \triangleright \blacktriangle y \lor$ para mover el telescopio hacia el objetivo que desea observar, presione ENTER para guardar el objetivo. Presione el botón SPEED para cambiar la velocidad de rotación si es necesario. Coordenadas de entrada (de un objeto terrestre) Use el botón \blacktriangledown o \blacktriangle para mover el cursor a la línea "Coord de entrada", use el botón \triangleright o \blacktriangleleft para número de objeto que desea almacenar y presione ENTRAR. Una pantalla de configuración de coordenadas será

desplegado:

Use el botón ► o ◄ para mover el cursor, y el botón ▼ o ▲ para cambiar el número. Presiona ENTER para finalizar la configuración de coordenadas del objeto terrestre.

3.3. Sincronizar con el objetivo

Esta operación hará coincidir las coordenadas actuales del telescopio con la ascensión recta objetivo y declinación. Después de girar a un objeto, mueva el cursor a "Sincronizar con el objetivo" y presione ENTRAR. Sigue la pantalla para hacer la sincronización. El uso de esta función puede mejorar la precisión de GOTO en el cielo cercano Se pueden realizar múltiples sincronizaciones si es necesario.

"Sincronizar con destino" solo funcionará después de que se haya realizado "Seleccionar y girar". Tú puedes necesitar usando la tecla VELOCIDAD para cambiar la velocidad de rotación para facilitar el procedimiento de centrado. UNA la velocidad de rotación predeterminada es 2X.

3.4. Configurar controlador

3.4.1. Configurar tiempo y sitio

Consulte el PASO 8 en la Sección 2.1.

3.4.2. Establecer información de visualización

Ajustar contraste LCD

Use las teclas de flecha para ajustar el contraste de la pantalla LCD. Presione ENTER.

LCD luz de fondo.

Use las teclas de flecha para ajustar la intensidad de la luz de fondo de la pantalla LCD. Presione ENTER.

LCD	Back	Light	

Luz de fondo del teclado.

Use las teclas de flecha para ajustar la luz de fondo del teclado. Presione ENTER.

3.4.3. Establecer tono de tecla

Enciende / apaga el pitido al presionar las teclas

3.4.4 Establecer modo de trabajo Azi

Esta función establecerá el modo de acimut de montaje mientras realiza GOTO. Hay dos modos de selección:

El "AZI +/- 200 grados" rotará la montura entre -200º y + 200º en acimut dirección para evitar la envoltura de la línea de alimentación de CA / CC. Sin embargo, el montaje puede tomar un camino más largo para giró hacia un objeto. El "modo de ejecución libre AZI" tomará un camino más corto mientras gira a lo largo del dirección azimutal, que es la mejor para el funcionamiento con batería. La configuración predeterminada es "AZI +/- 200 grados" modo.

3.4.5. Resetear todo

Restablezca todas las configuraciones a los datos predeterminados de fábrica.

3.5. Alinear

Esta función se usa para alinear una montura de telescopio usando estrellas conocidas para mejorar su GOTO y precisión de seguimiento. Antes de la alineación en estrella, asegúrese de que el soporte esté bien nivelado y en su posición del estacionamiento. Además de "Solarsys Align", el sistema también proporciona "One Star Align" y "Two Star Align". Cualquiera de los dos se puede seleccionar para la alineación del telescopio.

3.5.1. Solarsys Align

Presione MENÚ, desplácese hacia abajo en el menú y seleccione "Alinear". Presione ENTER y seleccione "Solarsys Align". Seleccione cualquiera de los objetos del sistema solar enumerados como su objetivo de alineación, como la luna. Presione ENTER. Si la Luna está por encima del horizonte, el telescopio girará automáticamente a eso. Si la Luna no está en el centro de su ocular, use la tecla ◀ ▲ o ▼ para centrar el objeto en tu ocular Presione el botón SPEED para cambiar la velocidad de rotación si es necesario. Luego presione ENTER para completa la alineación.

3.5.2. One Star Align

Desde el menú principal, seleccione "Alinear". Seleccione "One Star Align" y presione ENTER. Una lista de las estrellas de alineación brillante que están por encima del horizonte se calculan en función de su hora y ubicación local.

Estas estrellas se enumeran alfabéticamente. Use el botón \blacktriangle o \lor para seleccionar una estrella y presione ENTER. El montaje se girará automáticamente. Use la tecla $\blacktriangleleft \triangleright \blacktriangle$ o \lor para centrar el objeto en su ocular Presione el botón SPEED para cambiar la velocidad de rotación si es necesario. Luego presione ENTER para completa la alineación. O presione la tecla ATRÁS (Back) para cancelar el proceso. Si tiene una configuración inicial muy buena, una alineación de estrella debería ser suficiente precisión GOTO. Para aumentar la precisión, puede optar por alinear dos estrellas.

3.5.3. Alineación de dos estrellas

La alineación de dos estrellas aumentará la precisión GOTO de la montura. Se sugiere hacer alineación de dos estrellas después de una alineación de estrella. Seleccione "Alineación de dos estrellas" en el menú Alinear. Use \blacktriangle o \lor para seleccionar una estrella y presione ENTER. El montaje se girará automáticamente. Use $\blacktriangleleft
ightharpoondow$ para centrar el objeto en su ocular. Presione el botón SPEED para cambiar el giro velocidad si es necesario. Luego presione ENTER para completar la alineación. Después de que termines la primera estrella, el sistema le pedirá que elija la segunda estrella. Repita el proceso para terminar el segundo. alineación de estrellas Aparecerá brevemente la pantalla "¡Alinear OK!". Para obtener un mejor efecto de alineación, es segerido elegir dos estrellas alineadas muy separadas.

El resultado de "Alineación de dos estrellas" se anulará si "Alineación de Solarsys", "Alineación de una estrella" o "Sincronización. a Target "se realiza después de" Two Star Align ".

3.6. Modificar catálogo de estrellas

Además de varias listas de estrellas disponibles en el controlador manual, los usuarios pueden agregar, editar o eliminar sus propios objetos definidos. La lista de cometas y asteroides también se puede editar. Hasta 256 usuarios. Se pueden agregar o modificar objetos. Para cometas o asteroides, el número máximo es 64, que incluye los objetos precargados.

Para modificar un catálogo de estrellas, presione MENÚ, use el botón ▲ o ▼, mueva el cursor a "Modificar catálogo de estrellas "y presione ENTER. La siguiente pantalla mostrará:

User	RA&DEC	JD2000
Comet	s	
Astei	roids	

Use el botón ▲ o ▼ para seleccionar Usuario RA y DEC JD2000, Cometas o Asteroides.

3.6.1. Usuario RA y DEC JD2000

Seleccione "User RA & DEC JD2000" y presione ENTER, aparecerá un menú como el siguiente:

```
Add a new object
Edit one data
Delete one data
Delete all
```

Añadir un nuevo objeto:

Use el botón ▼ o ▲ para mover el cursor a la línea "Agregar un nuevo objeto" y presione ENTER. Ingrese el nombre de su objeto con las teclas ▲ o ▼ para cambiar la visualización de 1 a 9, espacio, - y de la A a la Z, y las teclas ◀ o ► para mover el cursor. Presione ENTRAR cuando haya terminado. Una pantalla aparecerá para pedirle que ingrese a R.A. y DEC. números:

Use la tecla ◀ o ▶ para mover el cursor y la tecla ▲ o ▼ para cambiar los números de su objeto. RA varía de 0 a 24 horas y DEC de -90 grados a +90 grados. Presiona ENTER cuando haya terminado. Una pantalla de confirmación mostrará:

Presione ENTER para confirmar. El objeto de usuario se almacenará en el controlador de mano en secuencia. Se pueden agregar hasta 256 objetos. Presione ATRÁS para regresar al menú Modificar Catálogo de Estrellas.

Editar un dato

Use el botón $\mathbf{\nabla}$ o \mathbf{A} para mover el cursor a la línea "Editar un dato" y presione ENTER. UNA la pantalla de objeto de usuario mostrará:

La primera línea muestra el número de objeto del usuario y si está por encima del horizonte. El segundo la línea muestra el nombre del objeto de usuario, aquí está "BX". La tercera línea muestra la RA actual del objetivo y coordenadas DEC. La línea inferior muestra la altitud del objeto y la posición azimutal. Use ◀ o ► mueva la posición del cursor y la tecla ▲ o ▼ cambie el número para ajustar el objeto que desea Para editar. Presione ENTRAR cuando sea correcto.

Siga el mismo procedimiento que "Agregar un nuevo objeto" para editarlo. Presione ATRÁS para volver a Modificar el menú del catálogo de estrellas.

Eliminar un dato Use el botón ▼ o ▲ para mover el cursor a la línea "Eliminar un dato" y presione ENTER. UNA la pantalla de objeto de usuario mostrará:

Use el botón \blacktriangleright o \triangleleft para mover el cursor, y el botón \triangledown o \blacktriangle para cambiar el número. Presiona ENTER para eliminar el objeto seleccionado. Presione ATRÁS para regresar al menú Modificar Catálogo de Estrellas.

Eliminar todos

Use el botón ▼ o ▲ para mover el cursor a la línea "Eliminar todo" y presione ENTER para eliminar todos los datos de RA y DEC JD2000 del usuario.

3.6.2. Cometas

Seleccione "Cometas" y presione ENTRAR, aparecerá un menú como el siguiente:

```
Add a new comet
Edit one comet
Delete one comet
Reset all comets
```

Añadir un nuevo cometa:

El controlador de mano tiene 64 cometas precargados. Antes de que se pueda agregar un nuevo cometa de usuario, un registro de cometa existente tiene que ser eliminado. (Ver Eliminar un cometa) Seleccione "Agregar un nuevo cometa" y presione ENTER. Ingrese el nombre de su objeto usando Tecla ▲ o ▼ para cambiar la visualización de 1 a 9, espacio, - y A a Z, y tecla ◀ o ► para mover el cursor Luego le pedirá la siguiente información: Año, Mes, Día, e, q, w, Omega e i.

Después de ingresar todos estos parámetros, aparecerá una pantalla de confirmación:

Presione ENTER para confirmar. El objeto de usuario se almacenará en el cometa eliminado anterior. posición. Se puede seleccionar y girar desde el menú Cometas. Presione ATRÁS para retroceder para modificar Menú del catálogo de estrellas.

Editar un cometa

Use el botón ▼ o ▲ para mover el cursor a la línea "Editar un cometa", y presione ENTER. UNA la pantalla de objeto de usuario mostrará:

La primera línea muestra el número de este cometa y si está por encima del horizonte. El segundo la línea muestra el nombre del cometa, aquí está "6P d'Arrest". La tercera línea muestra la corriente del cometa.

Coordenadas RA y DEC. La línea inferior muestra su altitud y posición azimutal. Use \blacktriangleleft o \blacktriangleright mueva la posición del cursor y la tecla \blacktriangle o \blacktriangledown cambie el número para ajustar el objeto que desea editar. Presione ENTRAR cuando sea correcto. Siga el mismo procedimiento que "Agregar un nuevo cometa" para editarlo. Presione ATRÁS para volver a Modificar el menú del catálogo de estrellas.

Eliminar un cometa

Use el botón ▼ o ▲ para mover el cursor a la línea "Eliminar un cometa" y presione ENTER. UNA La pantalla consta de información del cometa que mostrará:

Use el botón ► o ◄ para mover el cursor, y el botón ▼ o ▲ para cambiar el número. Prensa ENTER para eliminar el objeto seleccionado.

Presione ATRÁS para regresar al menú Modificar Catálogo de Estrellas. Restablecer todos los cometas

Use el botón $\mathbf{\nabla}$ o \mathbf{A} para mover el cursor a la línea "Restablecer todos los cometas" y presione ENTER para restaurar todos los datos de cometas eliminados o modificados a la configuración predeterminada de fábrica.

3.6.3. Asteroides

Seleccione "Asteroides" y presione ENTER, aparecerá un menú como el siguiente:

```
Add a new asteroid
Edit one asteroid
Delete one asteroid
Reset asteroids data
```

Consulte 3.6.2 Cometas para configurar los asteroides.

3.7. Lista de observación

Una lista de observación es una lista de sus objetos celestes favoritos en la base de datos. El usuario puede agregar, eliminar y navegar por la lista de observación. Todos los objetos celestes, incluidos los objetos de usuario, se pueden compilar en la lista. Se pueden agregar hasta 20 objetos a la lista de observación.

Para configurar / modificar una Lista de vigilancia, presione MENÚ, use el botón ▲ o ▼ para mover el cursor a "Lista de observación" y presione ENTER. La siguiente pantalla mostrará: Seleccione "Agregar un objeto de observación" y presione ENTER. Explore la lista de objetos celestes y seleccione el que desea ver presionando ENTER. Siga las indicaciones de la pantalla para confirmar selección. Una vez que haya terminado, presione ATRÁS para volver al menú Lista de observación. También puede eliminar uno o todos los objetos en su lista de observación. Después de establecer la lista de observación, se se puede observar a través de la operación "Seleccionar y girar", ya sea mirándolos manualmente o automáticamente usando Watch List Auto.

3.8. Establecer coordenadas de telescopio

Establezca la altitud y el acimut actuales de su telescopio.

3.9. Estacionamiento del telescopio

Estaciona tu telescopio. Regrese el telescopio a su posición inicial, es decir, su altitud es 90º0.0 ' y azimut es 180º0.0 '.

4. Mantenimiento y servicio

4.1. Mantenimiento

El soporte y telescopio SmartStar[®] E es un instrumento de precisión diseñado para producir vida útil de aplicaciones gratificantes. Debe dar el cuidado y respeto debido a cualquier instrumento de precisión, su telescopio rara vez requerirá servicio o mantenimiento de fábrica. Pautas de mantenimiento

incluir:

1. Usando un paño húmedo para limpiar el soporte y el controlador de mano. No use el solvente.

2. **Deje la tapa antipolvo puesta mientras no opera el telescopio**. Como con cualquier instrumento de calidad, las superficies de lentes o espejos deben limpiarse con la menor frecuencia posible.

Superficie frontal, los espejos aluminizados, en particular, deben limpiarse solo cuando sea absolutamente necesario. En todo evite tocar cualquier superficie del espejo. **Un poco de polvo en la superficie de un espejo o lente causa una pérdida insignificante de rendimiento y no debe considerarse una razón para limpiar la superficie**. Cuando sea necesario limpiar lentes o espejos, use un cepillo de pelo de camello o una pera para soplar suavemente para eliminar el polvo.

3. Los materiales orgánicos (p. Ej., Huellas dactilares) en la lente pueden eliminarse con una solución de 3 partes agua destilada a 1 parte de alcohol isopropílico. Use pañuelos faciales blancos suaves o bolas de algodón haz trazos cortos y suaves. Cambie los tejidos a menudo. No use perfumado, coloreado o loción tejidos podría dañar la óptica.

4. Si su telescopio se usa al aire libre en una noche húmeda, las superficies del telescopio pueden acumularse condensación de agua. Si bien dicha condensación normalmente no causa ningún daño al telescopio, se recomienda esperar a que se seque todo el telescopio antes de empacarlo. **No limpie ninguna de las superficies ópticas.** Además, la tapa antipolvo no debe colocarse hasta que el tubo óptico hasta que el telescopio esté completamente seco.

5. Si su telescopio no se va a utilizar durante un período prolongado, tal vez durante un mes o más, es recomendable retirar las baterías del soporte de la batería, si están instaladas. Baterías instaladas por períodos prolongados puede tener fugas, causando daños a la electrónica y circuitos del telescopio

6. No deje su telescopio al aire libre en un día cálido o dentro de un automóvil sellado por un período prolongado período de tiempo. Las temperaturas ambientales excesivas pueden dañar el interior del telescopio. lubricación y circuitos electrónicos.

4.2. Almacenamiento y transporte

Cuando no esté en uso, guarde el telescopio en un lugar fresco y seco. No exponga el instrumento. a calor o humedad excesiva. Es mejor guardar el telescopio en su caja original con la perilla de bloqueo desbloqueada. Si envía el telescopio, use la caja original y el material de embalaje para proteja el telescopio durante el envío. Cuando transporte el telescopio, tenga cuidado de no golpear ni dejar caer el instrumento; este tipo de golpes puede dañar la óptica o afectar la precisión de seguimiento de GOTO.

4.3. Solución de problemas

Las siguientes sugerencias pueden ser útiles con el funcionamiento del soporte SmartStar[®] E y su telescopio.

La luz indicadora de encendido en el soporte no se enciende o no hay respuesta cuando presionando las teclas de flecha del controlador de mano:

1. Verifique que el interruptor de encendido del soporte esté en la posición ON.

2. Verifique que el cable del controlador manual esté firmemente conectado al puerto HBX en el soporte, o cambie el cable al otro puerto HBX.

3. Compruebe la fuente de alimentación, que incluye:

¿Usando la batería? ¿Las baterías están instaladas correctamente? ¿Las baterías están frescas? Cómo

¿Cuánto tiempo se han usado? (la rotación frecuente y GOTO agotarán la batería muy

con rapidez)

¿Usa un adaptador de CA o CC? Verifique los enchufes al soporte y al tomacorriente.

¿Usando cable de extensión? Asegúrese de que el cable esté en buenas condiciones. Caída de energía a lo largo del cable de extensión puede causar el problema. También verifique todos los enchufes y conexiones.

4. Si el telescopio no responde a los comandos, coloque el interruptor de encendido en OFF y luego vuelva a ON.

5. Si el telescopio no gira después de que se aplica energía o si el motor se detiene o se detiene, verifique que no hay obstrucciones físicas que impidan el movimiento del telescopio. El soporte está encendido y el control manual muestra la pantalla de información. Cuando un se coloca la tecla de flecha, el motor está funcionando pero el soporte no se mueve:

Verifique la velocidad de rotación en la pantalla LCD. Presione la tecla SPEED para cambiarlo a MAX e inténtalo de nuevo.

Parece que no se puede enfocar (no aparece ninguna imagen en el ocular):

Confirme que se haya quitado la tapa antipolvo del telescopio. Siga girando la perilla de enfoque. Su telescopio tiene un mecanismo de enfoque fino que permite para enfocar una imagen con mucha precisión. Sin embargo, esto significa que puede que tenga que girar el perilla de enfoque de 20 a 40 vueltas completas para lograr el enfoque, particularmente la primera vez que usa su telescopio. Después de eso, se necesitarán menos giros.

Las imágenes a través del ocular aparecen desenfocadas o distorsionadas:

1. La ampliación utilizada puede ser demasiado alta para las condiciones de visión. Cambie a un ocular de potencia más baja.

2. Si está dentro de una casa o edificio cálido, muévase afuera. Las condiciones del aire interior pueden distorsionar las imágenes terretres o imágenes celestes, lo que hace difícil, si no imposible, obtener un enfoque nítido. Para una visualización óptima, utilice el telescopio al aire libre en lugar de observar a través de una ventana abierta.

3. Si ve un objeto terrestre en un día cálido, las olas de calor distorsionan la imagen.

4. La óptica dentro del telescopio necesita tiempo para ajustarse a la temperatura ambiente exterior para proporcionar la imagen más nítida. Para "enfriar" la óptica, coloque el telescopio afuera de 10 a 15 minutos antes de que comience la observación.

Appendix A. Technical Specifications

SmartStar [®] Cube-E GOTO Mount							
Mount	AltAzimuth Mount						
Body Materials	Die-cast Aluminum						
Motor	Dual-Axis DC Servo motor with encoders						
Gear	Acetal worm wheel/Nylon 6 worm gear						
Bearing	4 steel ball bearings						
Slew Speed	2×,8×,64×,256×,MAX(~4°/sec)						
Hand Controller	GoToNova [®] 8405						
Processor	32bit ARM						
Object in Database	~14,000						
GOTO accuracy	1 Arc Min. (Typical)						
Tracking	Automatic						
Payload	7 ~ 11 lb						
Battery	AA x 8 (Not Included)						
Power Requirement	DC 12V±2V, >1.2A						
Tripod	1.25" stainless steel						
Operating Temperature	0 ~ 40°C						
Weight with tripod	5.5 lbs (without OTA)						
Refractor Telescope							
Optical Design	Achromatic Refractor						
Clear Aperture	80 mm						
Focal Length	400 mm						
Focal Ratio	f/5						
Resolving Power	1.4 arc secs						
Weight	2.2 lbs						
Newtonian Reflector	Telescope						
Optical Design	Reflector						
Clear Aperture	114 mm						
Focal Length	1000 mm						
Focal Ratio	f/8.8						
Resolving Power	1 arc secs						
Finderscope	Red dot						
Weight	4 lbs						
Maksutov-Cassegrain	Telescope						
Optical Design	Maksutov-Cassegrain						
Clear Aperture	90 mm						
Focal Length	1200 mm						
Focal Ratio	f/13.3						
Resolving Power	1.3 arc secs						
Finderscope	Red dot						
Weight	4 lbs						

Appendix B. GoToNova® 8405 HC MENU STRUCTURE

Appendix C. GoToNova® Star List

Modern Constellations

for 8405

No.	Constellation	Abbreviation	No.	Constellation	Abbreviation
1	Andromeda	And	45	Lacerta	Lac
2	Antlia	Ant	46	Leo	Leo
3	Apus	Aps	47	Leo Minor	LMi
4	Aquarius	Aqr	48	Lepus	Lep
5	Aquila	AqI	49	Libra	Lib
6	Ara	Ara	50	Lupus	Lup
7	Aries	Ari	51	Lynx	Lyn
8	Auriga	Aur	52	Lyra	Lyr
9	Boötes	Boo	53	Mensa	Men
10	Caelum	Cae	54	Microscopium	Mic
11	Camelopardalis	Cam	55	Monoceros	Mon
12	Cancer	Cnc	56	Musca	Mus
13	Canes Venatici	CVn	57	Norma	Nor
14	Canis Major	CMa	58	Octans	Oct
15	Canis Minor	CMi	59	Ophiuchus	Oph
16	Capricornus	Cap	60	Orion	Ori
17	Carina	Car	61	Pavo	Pav
18	Cassiopeia	Cas	62	Pegasus	Peg
19	Centaurus	Cen	63	Perseus	Per
20	Cepheus	Сер	64	Phoenix	Phe
21	Cetus	Cet	65	Pictor	Pic
22	Chamaeleon	Cha	66	Pisces	Psc
23	Circinus	Cir	67	Piscis Austrinus	PsA
24	Columba	Col	68	Puppis	Pup
25	Coma Berenices	Com	69	Pyxis	Рух
26	Corona Australis	CrA	70	Reticulum	Ret
27	Corona Borealis	CrB	71	Sagitta	Sge
28	Corvus	Crv	72	Sagittarius	Sgr
29	Crater	Crt	73	Scorpius	Sco
30	Crux	Cru	74	Sculptor	Scl
31	Cygnus	Cyg	75	Scutum	Sct
32	Delphinus	Del	76	Serpens	Ser
33	Dorado	Dor	77	Sextans	Sex
34	Draco	Dra	78	Taurus	Tau
35	Equuleus	Equ	79	Telescopium	Tel
36	Eridanus	Eri	80	Triangulum	Tri
37	Fornax	For	81	Triangulum Australe	TrA
38	Gemini	Gem	82	Tucana	Tuc
39	Grus	Gru	83	Ursa Major	UMa
40	Hercules	Her	84	Ursa Minor	UMi
41	Horologium	Hor	85	Vela	Vel
42	Hydra	Hya	86	Virgo	Vir
43	Hydrus	Hyi	87	Volans	Vol
44	Indus	Ind	88	Vulpecula	Vul

Messier

This table is licensed under the <u>GNU Free Documentation License</u>. It uses material from the <u>Wikipedia article List of Messier objects</u>

GOTONOVA Deep Sky Object List for 8405

ID No.	OBJECT	ID No.	OBJECT
1	47 Tucanae	48	Fornax A
2	Andromeda Galaxy	49	gamma Cas Nebula
3	Antennae	50	gamma Cyg Nebula
4	Arp's Spiral	51	Gem Cluster
5	Atom for Peace Galaxy	52	Ghost of Jupiter
6	Barnard's Galaxy	53	Grus Quartet/Galaxy
7	Baxendell's Nebula	54	h Persei/Open cluster
8	Bear Claw Nebula	55	Helix Nebula
9	Beehive Cluster	56	Helix
10	Bipolar Nebula	57	Hercules Cluster
11	Blackeye Galaxy	58	Herschel's Ray
12	Blinking Planetary	59	Hind's Variable Nebula
13	Blue Flash Nebula	60	Hubble's Variable Nebula
14	Blue Planetary	61	Intergalactic Wanderer
15	Blue Snowball Nebula	62	Jewel Box Cluster
16	Bode's Nebula	63	kappa Crucis Cluster
17	Box Nebula	64	Keenan's System
18	Bubble Nebula	65	Keyhole Nebula
19	Bug Nebula	66	Kidney Bean Galaxy
20	Butterfly Cluster	67	Lagoon Nebula
21	Butterfly Nebula	68	lambda CEN Cluster
22	California Nebula	69	Little Dumbbell
23	Carafe Group	70	Little Gem Nebula
24	Cat's Eye Nebula	71	Little Gem
25	Centaurus A	72	Little Ghost Nebula
26	Cetus A	73	Markarian's Chain
27	chi Persei	74	Mice Galaxies/N4676A
28	Christmas Tree Cluster	75	Miniature Spiral
29	Clown Face Nebula	76	Mirach's Ghost
30	Cocoon Nebula	77	mu NOR Cluster
31	Coddington's Nebula	78	North America Nebula
32	Cone Nebula	79	Nubecula Minor
33	Copeland's Septet	80	omega Centuri
34	Cork Nebula	81	Omega Nebula
35	Crab Nebula	82	omicron Velorum Cluster
36	Crescent Nebula	83	Orion Nebula
37	Double Cluster	84	Owl Nebula
38	Duck Nebula	85	Pancake
39	Dumbbell Nebula	86	Papillon
40	Eagle Nebula (SER)	87	Pelican Nebula
41	Eagle Nebula	88	Perseus A
42	Eight-Burst Nebula	89	Phantom Streak Nebula
43	epsilon Orionis Nebula	90	Pinwheel Galaxy
44	Eskimo Nebula	91	Pleiades Nebula (Maia)
45	eta Carinae Nebula	92	Pleiades Nebula (Merope)
46	Flame nebula	93	Polarissima Australis
47	Flaming Star Nebula	94	Polarissima Borealis

			0 1 0 1
95	Praesepe	11/	Suntiower Galaxy
96	Ptolemy's Cluster	118	Swan Nebula
97	rho Ophiuchi Nebula	119	Table of Scorpius
98	Ring Nebula	120	Tank Track Nebula
99	Ringtail Galaxy	121	Tarantula Nebula
100	Rosette Nebula	122	Taurus A
101	Running Chicken Nebula	123	Tempel's Nebula
102	Saturn Nebula	124	The Box
103	Sculptor Galaxy Group	125	The Eyes
104	Sculptor Galaxy	126	The Mice
105	Seyfert's Sextet	127	Toby Jug Nebula
106	Siamese Twins	128	Tom Thumb Cluster
107	Silver Dollar	129	Triangulum Galaxy
108	Small Magellanic Cloud	130	Trifid Nebula
109	Sombrero Galaxy	131	Ursa Major A
110	Southern Integral Sign	132	Veil Nebula
111	Southern Pleiades	133	Virgo A
112	Spindle Galaxy	134	Whirlpool Galaxy
113	Spindle	135	Wild Duck Cluster
114	Star Queen Nebula	136	Witchhead Nebula
115	Stephan's Quintet	137	Zwicky's Triplet
116	Struve's Lost Nebula		

GTONOVA Named Star List

for 8405

001 Acamar	049 Ascella	097 Kaus Australis	145 Rassalas
002 Achernar	050 Asellus Australis	098 Kaus Borealis	146 Rasagethi
003 Acrux	051 Asellus Borealis	099 Kaus Media	147 Rasalhague
004 Acubens	052 Aspidiske	100 Keid	148 Rastaba
005 Adhafera	053 Atik	101 Kitalpha	149 Regulus
006 Adhara	054 Atlas	102 Kochab	150 Rigel
007 Al Na'ir	055 Atria	103 Kornephoros	151 Rigel Kentaurus
008 Albali	056 Avoir	104 Kurhah	152 Ruchbah
009 Alberio	057 Azha	105 Lesath	153 Rukbat
010 Alchibar	058 Baten Kaitos	106 Maia	154 Sabik
011 Alcor	059 Beid	107 Marfik	155 Sadachbia
012 Alcyone	060 Bellatrix	108 Markab	156 Sadalbari
013 Aldebaran	061 Betelgeuse	109 Matar	157 Sadalmelik
014 Alderamin	062 Biham	110 Mebsuta	158 Sadalsuud
015 Alfirk	063 Canopus	111 Megrez	159 Sadr
016 Algedi	064 Capella	112 Meissa	160 Saiph
017 Algenib	065 Caph	113 Mekbuda	161 Scheat
018 Algiebra	066 Castor	114 Menkalinan	162 Schedar
019 Algol	067 Celabrai	115 Menkar	163 Seginus
020 Algorab	068 Celaeno	116 Menkent	164 Shaula
021 Alhena	069 Chara	117 Menkib	165 Sheiak
022 Alioth	070 Chertan	118 Merak	166 Sheratan
023 Alkaid	071 Cor Caroli	119 Merope	167 Sirius
024 Alkalurops	072 Cursa	120 Mesartim	168 Skat
025 Alkes	073 Dabih	121 Miaplacidus	169 Spica
026 Almach	074 Deneb	122 Mintaka	170 Sterope
027 Alnasi	075 Deneb Algedi	123 Mira	171 Sulafat
028 Alnilam	076 Deneb Kaitos	124 Mirach	172 Syrma
029 Alnitak	077 Denebola	125 Mirfak	173 Talitha
030 Alphard	078 Dubhe	126 Mirzam	174 Tania Australis
031 Alphecca	079 Edasich	127 Mizar	175 Tania Borealis
032 Alpheratz	080 Electra	128 Muphrid	176 Tarazed
033 Alrakis	081 Elnath	129 Muscida	177 Taygeta
034 Alrescha	082 Eltanin	130 Nashira	178 Thuban
035 Alshain	083 Enif	131 Nekkar	179 Unukalhai
036 Altair	084 Errai	132 Nihal	180 Vega
037 Altais	085 Fomalhaut	133 Nunki	181 Vindemiatrix
038 Alterf	086 Furud	134 Nusakan	182 Wasat
039 Aludra	087 Gacrux	135 Peacock	183 Wazn
040 Alula Australis	088 Giausar	136 Phact	184 Yed Posterior
041 Alula Borealis	089 Gienah	137 Phecda	185 Yed Prior
042 Alya	090 Gomeisa	138 Pherkad	186 Zaniah
043 Ancha	091 Graffias	139 Pleione	187 Zaurak
044 Ankaa	092 Groombridge 1830	140 Polaris	188 Zavijava
045 Antares	093 Grumium	141 Pollux	189 Zosma
046 Arcturus	094 Hamal	142 Porrima	190 Zubenelgenubi
047 Arkab	095 Homan	143 Procvon	191 Zubeneschamali
048 Arneb	096 Izar	144 Propus	
- 197 miles	e de leur		

GOTONOVA Double Star List For 8405

		For 8405											
No.	Object	Const	Sep.	Magitude	SAO	Comm, Name	No.	Object	Const	Sep.	Magitude	SAO	Comm, Name
1	Gam	And	9.8	2.3/5.1	37734	Almaak	37	lot	Cas	2.3	4.7/7.0/8.2	12298	
2	Pi	And	35.9	4.4/8.6	54033		38	Psi	Cas	25	4.7/8.9	11751	
3	Bet	Aql	12.8	3.7 / 11	125235	Alshain	39	Sig	Cas	3.1	5.0 / 7.1	35947	
4	11	Aql	17.5	5.2/8.7	104308		40	E3053	Cas	15.2	5.9/7.3	10937	
5	15	AqI	34	5.5/7.2	142996		41	3	Cen	7.9	4.5/6.0	204916	
6	E2489	Aql	8.2	5.6 / 8.6	104668		42	Bet	Cep	13.6	3.2/7.9	10057	Alfirk
7	57	Aql	36	5.8/6.5	143898		43	Del	Cep	41	3.5/7.5	34508	
8	Zet	Aqr	2.1	4.3/4.5	146108		44	Xi	Cep	7.6	4.3/6.2	19827	Al kurhah
9	94	Aqr	12.7	5.3/7.3	165625		45	Кар	Cep	7.4	4.4/8.4	9665	
10	41	Aqr	5.1	5.6/7.1	190986		46	Omi	Cep	2.8	4.9/7.1	20554	
11	107	Aqr	6.6	5.7 / 6.7	165867		47	E2840	Cep	18.3	5.5/7.3	33819	
12	12	Aqr	2.5	5.8/7.3	145065		48	E2883	Cep	14.6	5.6/7.6	19922	
13	Tau	Agr	23.7	5.8/9.0	165321		49	Gam	Cet	2.8	5.0/7.7	110707	Kaffaljidhma
14	Gam	Ari	7.8	4.8/4.8	92681	Mesartim	50	37	Cet	50	5.2/8.7	129193	
15	Lam	Ari	37.8	4.8/6.7	75051		51	66	Cet	16.5	5.7/7.5	129752	
16	The	Aur	3.6	2.6/7.1	58636		52	Eps	CMa	7.5	1.5 / 7.4	172676	Adhara
17	Nu	Aur	55	4.0/9.5	58502		53	Tau	CMa	8.2	4.4/10/11	173446	
18	Ome	Aur	5.4	5.0 / 8.0	57548		- 54	145	CMa	25.8	4.8/6.8	173349	
19	Eps	Boo	2.8	2.5/4.9	83500	Izar	55	Mu	CMa	2.8	5.0/7.0	152123	
20	Del	Boo	105	3.5 / 7.5	64589		56	Nu 1	CMa	17.5	5.8 / 8.5	151694	
21	Mu 1	Boo	108	4.3 / 6.5	64686	Alkalurops	57	lot	Cnc	30.5	4.2/6.6	80416	
22	Tau	Boo	4.8	4.5 / 11	100706		- 58	Alp	Cnc	11	4.3 / 12	98267	Acubens
23	Кар	Boo	13.4	4.6 / 6.6	29046		59	Zet	Cnc	6	5.1/6.2	97646	
24	Xi	Boo	6.6	4.7 / 6.9	101250		60	24	Com	20.6	5.0 / 6.6	100160	
25	Pi	Boo	5.6	4.9 / 5.8	101139		61	35	Com	1.2	5.1/7.2/9.1	82550	
26	lot	Boo	38	4.9/7.5/13	29071		62	2	Com	3.7	5.9/7.4	82123	
27	E1835	Boo	6.2	5.1/6.9	120426		63	Zet	CrB	6.1	5.0 / 6.0	64833	
28	44	Boo	2.2	5.3/6.2	45357		64	Gam	Crt	5.2	4.1/9.6	156661	
29		Cam	2.4	4.2/8.5	24054		65	Del	Crv	24.2	3.0/9.2	157323	Algorab
30	32	Cam	21.6	5.3 / 5.8	2102		66	Alp	CVn	19.4	2.9/5.5	63257	Cor caroli
31	Alp 2	Cap	6.6	3.6 / 10	163427	Secunda giedi	67	25	CVn	1.8	5.0/6.9	63648	
32	Alp 1	Cap	45	4.2/9.2	163422	Prima giedi	68	2	CVn	11.4	5.8/8.1	44097	
33	Pi	Cap	3.4	5.2 / 8.8	163592		69	Gam	Cyg	41	2.2/9.5	49528	Sadr
34	Omi	Cap	21	5.9/6.7	163625		70	Del	Cyg	2.5	2.9/6.3	48796	
35	Alp	Cas	64.4	2.2/8.9	21609	Shedir	71	Bet	Cyg	34.4	3.1/5.1	87301	Albireo
36	Eta	Cas	12.9	3.5 / 7.5	21732	Achird	72	Omi 1	Cyg	107	3.8/6.7	49337	

No.	Object	Const	Sep.	Magitude	SAO	Comm. Name	No.	Object	Const	Sep.	Magitude	SAO	Comm. Name
73	52	Cyg	6.1	4.2/9.4	70467		111	95	Her	6.3	5.0 / 5.2	85647	
74	Ups	Cyg	15.1	4.4 / 10	71173		112	Кар	Her	27	5.0 / 6.2	101951	
75	Mu	Cyg	1.9	4.7 / 6.1	89940		113	E2063	Her	16.4	5.7 / 8.2	46147	
76	Psi	Cyg	3.2	4.9/7.4	32114		114	100	Her	14.3	5.9/5.9	85753	
77	17	Cyg	26	5.0/9.2	68827		115	54	Hya	8.6	5.1/7.1	182855	
78	61	Cyg	30.3	5.2 / 6.0	70919		116	HN69	Hya	10.1	5.9/6.8	181790	
79	49	Cyg	2.7	5.7 / 7.8	70362		117	Eps	Hyd	2.7	3.4 / 6.8	117112	
80	E2762	Cyg	3.4	5.8/7.8	70968		118	The	Hyd	29.4	3.9 / 10	117527	
81	E2741	Cyg	1.9	5.9/7.2	33034		119	N	Hyd	9.4	5.6 / 5.8	179968	
82	Gam	Del	9.6	4.5 / 5.5	106476		120		Lac	28.4	4.5 / 10	72155	
83	Eta	Dra	5.3	2.7 / 8.7	17074		121	8	Lac	22	5.7/6.5/10	72509	
84	Eps	Dra	3.1	3.8/7.4	9540	Tyl	122	Gam 1	Leo	4.4	2.2/3.5	81298	Algieba
85	47	Dra	34	4.8/7.8	31219		123	lot	Leo	1.7	4.0 / 6.7	99587	
86	Nu	Dra	61.9	4.9/4.9	30450		124	54	Leo	6.6	4.3 / 6.3	81583	
87	Psi	Dra	30.3	4.9 / 6.1	8890		125	Gam	Lep	96	3.7 / 6.3	170757	
88	26	Dra	1.7	5.3 / 8.0	17546		126	lot	Lep	12.8	4.4 / 10	150223	
89	16&17	Dra	90	5.4/5.5/6.4	30012		127	Кар	Lep	2.6	4.5/7.4	150239	
90	Mu	Dra	1.9	5.7 / 5.7	30239		128	h3752	Lep	3.2	5.4 / 6.6	170352	
91	40/41	Dra	19.3	5.7 / 6.1	8994		129	lot	Lib	57.8	4.5/9.4	159090	
92	1	Equ	10.7	5.2/7.3	126428		130		Lib	23	5.7 / 8.0	183040	
93	The	Eri	4.5	3.4 / 4.5	216114	Acamar	131	Mu	Lib	1.8	5.8 / 6.7	158821	
94	Tau 4	Eri	5.7	3.7 / 10	168460		132	Eta	Lup	15	3.6/7.8	207208	
95	Omi 2	Eri	8.3	4.4/9.5/11	131063	Keid	133	Xi	Lup	10.4	5.3 / 5.8	207144	
96	32	Eri	6.8	4.8 / 6.1	130806		134	38	Lyn	2.7	3.9 / 6.6	61391	
97	39	Eri	6.4	5.0 / 8.0	149478		135	12	Lyn	1.7	5.4/6.0/7.3	25939	
98	Alp	For	5.1	4.0 / 6.6	168373	Fornacis	136	19	Lyn	14.8	5.8 / 6.9	26312	
99	Ome	For	10.8	5.0/7.7	167882		137	Bet	Lyr	46	3.4/8.6	67451	Sheliak
100	Alp	Gem	3.9	1.9/2.9	60198	Castor	138	Zet	Lyr	44	4.3 / 5.9	67321	
101	Del	Gem	5.8	3.5 / 8.2	79294	Wasat	139	Eta	Lyr	28.1	4.4 / 9.1	68010	Aldafar
102	Lam	Gem	9.6	3.6 / 11	96746		140	Eps	Lyr	208	5.0 / 5.2	67310	Double dbl
103	Кар	Gem	7.1	3.6 / 8.1	79653		141	Eps 1	Lyr	2.6	5.0/6.1	67309	Double dbl1
104	Zet	Gem	87	3.8/10/8.0	79031	Mekbuda	142	Eps 2	Lyr	2.3	5.2/5.5	67315	Double dbl2
105	38	Gem	7.1	4.7/7.7	96265		143	Alp	Mic	20.5	5.0 / 10	212472	
106	Del	Her	8.9	3.1/8.2	84951	Sarin	144	Zet	Mon	32	4.3 / 10	135551	
107	Mu	Her	34	3.4 / 9.8	85397		145	Eps	Mon	13.4	4.5 / 6.5	113810	
108	Alp	Her	4.6	3.5/5.4	102680	Rasalgethi	146	Bet	Mon	7.3	4.7/4.8/6.1	133316	
109	Gam	Her	42	3.8 / 9.8	102107		147	15	Mon	2.8	4.7 / 7.5	114258	
110	Rho	Her	4.1	4.6 / 5.6	66001		148	70	Oph	4.5	4.0 / 5.9	123107	

No.	Object	Const	Sep.	Magitude	SAO	Comm. Name
149	67	Oph	55	4.0/8.6	123013	
150	Lam	Oph	1.5	4.2/5.2	121658	Marfic
151	Xi	Oph	3.7	4.4/9.0	185296	
152	36	Oph	4.9	5.1/5.1	185198	
153	Tau	Oph	1.7	5.2/5.9	142050	
154	Rho	Oph	3.1	5.3/6.0	184382	
155	39	Oph	10.3	5.4/6.9	185238	
156	Bet	Ori	9.5	0.1/6.8	131907	Rigel
157	Del	Ori	53	2.2/6.3	132220	Mintaka
158	lot	Ori	11.3	2.8/6.9	132323	Nair al saif
159	Lam	Ori	4.4	3.6/5.5	112921	Meissa
160	Sig	Ori	13	3.8/7.2/6.5	132406	
161	Rho	Ori	7.1	4.5/8.3	112528	
162	E747	Ori	36	4.8/5.7	132298	
163	1	Peq	36.3	4.1/8.2	107073	
164	Eps	Per	8.8	2.9/8.1	56840	
165	Zet	Per	12.9	2.9/9.5	56799	Atik
166	Eta	Per	28.3	3.3/8.5	23655	Miram in becvar
167	The	Per	18.3	4.1 / 10	38288	
168	E331	Per	12.1	5.3/6.7	23765	
169	Del	PsA	5.1	4.2/9.2	214189	
170	lot	PsA	20	4.3/11	213258	
171	Bet	PsA	30.3	4.4/7.9	213883	
172	Gam	PsA	4.2	4.5/8.0	214153	
173	Eta	PsA	1.7	5.8/6.8	190822	
174	Alp	Psc	1.8	4.2/5.2	110291	Alrisha
175	55	Psc	6.5	5.4/8.7	74182	
176	Psi	Psc	30	5.6/5.8	74483	
177	Zet	Psc	23	5.6/6.5	109739	
178	Кар	Pup	9.9	4.5/4.7	174199	
179	Eta	Pup	9.6	5.8/5.9	174019	
180	Eps	Scl	4.7	5.4/8.6	167275	

	Object	Const	Sep.	Magitude	SAO	Comm. Name
181	Bet	Sco	13.6	2.6/4.9	159682	Graffias
182	Sig	Sco	20	2.9/8.5	184336	Alniyat
183	Nu	Sco	41	4.2/6.1	159764	Jabbah
184	2	Sco	2.5	4.7/7.4	183896	
185		Sco	23	5.4/6.9	207558	
186	Hn39	Sco	5.4	5.9/6.9	184369	
187	12	Sco	3.9	5.9/7.9	184217	
188	Bet	Ser	31	3.7/9.0	101725	
189	Del	Ser	4.4	4.2/5.2	101624	
190	Nu	Ser	46	4.3/8.5	160479	
191	The	Ser	22.3	4.5/5.4	124070	Alya
192	59	Ser	3.8	5.3/7.6	123497	
193	Zet	Sge	8.5	5.0/8.8	105298	
194	Eta	Sgr	3.6	3.2/7.8	209957	
195		Sgr	5.5	5.2/6.9	209553	
196	Phi	Tau	52	5.0/8.4	76558	
197	Chi	Tau	19.4	5.7/7.6	76573	
198	118	Tau	4.8	5.8/6.6	77201	
199	6	Tri	3.9	5.3/6.9	55347	
200	Zet	UMa	14	2.4/4.0	28737	Mizar
201	Nu	UMa	7.2	3.5/9.9	62486	Alula borealis
202	23	UMa	23	3.6/8.9	14908	
203	Ups	UMa	11.6	3.8 / 11	27401	
204	Xi	UMa	1.8	4.3/4.8	62484	Alula australia
205	Sig 2	UMa	3.9	4.8/8.2	14788	
206	57	UMa	5.4	5.4/5.4	62572	
207	Alp	UMi	18.4	2.0/9.0	308	Polaris
208	Gam	Vir	1.4	3.5/3.5	138917	Porrima
209	The	Vir	7.1	4.4/9.4	139189	
210	Phi	Vir	4.8	4.8/9.3	139951	
	0.4	V/in	2.0	57/79	120082	

GTONOVA Comet List

for 8405

No.	Name	Year	Month	Day	e	q	ω	Ω	i	Н	G
1	6P d'Arrest	2008	8	14.9663	0.612767	1.353724	178.1336	138.9339	19.5151	7.5	16
2	7P Pons-Winnecke	2008	9	26.6083	0.634826	1.253104	172.3139	93.4179	22.3096	10	6
3	8P Tuttle	2008	1	26.8949	0.819561	1.028148	207.5248	270.349	54.9668	8	8
4	9P Tempel	2011	1	12.2668	0.516901	1.50924	178.9296	68.9277	10.5245	5.5	10
5	10P Tempel	2010	7	4.8723	0.536264	1.423146	195.6229	117.8315	12.0227	5	10
6	14P Wolf	2009	2	27.2831	0.357869	2.724147	158.9974	202.1187	27.9444	5.5	12
7	15P Finlay	2008	6	22.5945	0.721504	0.969941	347.5067	13.7983	6.8171	12	4
8	16P Brooks	2008	4	12.6566	0.562913	1.466397	219.4839	159.3684	4.2591	7.5	10
9	17P Holmes	2007	5	4.8086	0.432857	2.053122	24.3224	326.8536	19.1161	10	6
10	19P Borrelly	2008	7	22.3351	0.624532	1.354434	353.3657	75.4365	30.3244	4.5	10
11	22P Kopff	2009	5	25.4013	0.544394	1.577587	162.8156	120.8986	4.7239	3	10.4
12	24P Schaumasse	2009	8	9.6289	0.7036	1.213924	58.0011	79.7185	11.7293	6.5	14
13	29P Schwassmann-Wachmann	2004	7	3.1617	0.045115	5.717498	48.3485	312.6347	9.3945	4	4
14	30P Reinmuth	2010	4	19.5968	0.500791	1.884042	13.2241	119.7532	8.1225	9.5	6
15	31P Schwassmann-Wachmann	2010	9	30.3312	0.192205	3.423778	18.0697	114.1879	4.5475	5	8
16	33P Daniel	2008	7	20.3006	0.461966	2.169362	18.958	66.5621	22.3747	10	12
17	36P Whipple	2011	12	31.6411	0.258516	3.088107	201.8996	182.395	9.9357	8.5	6
18	43P Wolf-Harrington	2010	7	1.5473	0.595103	1.357198	191.2932	250.0422	15.9772	8	6
19	44P Reinmuth	2008	2	18.4132	0.428497	2.106896	58.1213	286.602	5.9043	8.3	6
20	46P Wirtanen	2008	2	2.4602	0.658121	1.056931	356.3185	82.1665	11.7403	9	6
21	47P Ashbrook-Jackson	2009	1	31.9991	0.319063	2.799127	357.693	356.9828	13.0531	1	11.2
22	49P Arend-Rigaux	2011	10	18.9016	0.60189	1.414468	333.0283	118.9371	19.1063	11.3	4.4
23	54P de Vico-Swift-NEAT	2009	11	28.5135	0.42703	2.171755	1.9406	358.8616	6.067	10	6
24	57P du Toit-Neujmin-Delporte	2008	12	25.9437	0.500102	1.723741	115.2831	188.8247	2.8485	12.5	6
25	59P Keams-Kwee	2009	3	7.6295	0.475156	2.355532	127.5273	313.0361	9.3412	7	6
26	61P Shajn-Schaldach	2008	9	6.1338	0.426722	2.108045	221.6446	163.1114	6.0091	6	10
27	64P Swift-Gehrels	2009	6	14.2956	0.689544	1.37701	96.3046	300.7414	8.9514	8.5	12
28	65P Gunn	2010	3	2.0144	0.319539	2.440529	196.5992	68.3597	10.3857	5	6
29	67P Churyumov-Gerasimenko	2009	2	28.3641	0.640213	1.246496	12.6998	50.1958	7.0408	11	4
30	68P Klemola	2009	1	20.9663	0.640457	1.759031	153.9745	175.3289	11.1448	10	4
31	74P Smirnova-Chernykh	2009	7	30.439	0.147587	3.55766	87.2572	77.1026	6.6474	5	6
32	77P Longmore	2009	7	7.8488	0.358113	2.310327	196.6948	14.9167	24.3983	7	8

33	81P Wild	2010	2	22.7485	0.537369	1.597838	41.8137	136.0972	3.2375	7	6
34	82P Gehrels	2010	1	12.4773	0.121921	3.633291	226.3166	239.5183	1.1264	5	8
35	85P Boethin	2008	12	16.3724	0.775348	1.147441	53.5862	343.4491	4.2172	6.5	8
36	86P Wild	2008	5	19.5532	0.366349	2.299076	179.0341	72.5235	15.4397	11	6
37	88P Howell	2009	10	12.4726	0.561968	1.363503	235.9597	56.758	4.3818	11	6
38	89P Russell	2009	8	17.1771	0.39932	2.279933	249.3226	42.3911	12.0321	11.5	6
39	94P Russell	2010	3	29.8581	0.36301	2.239971	92.8775	70.9216	6.1829	9	6
40	97P Metcalf-Brewington	2011	8	23.0708	0.459505	2.584877	228.7909	185.3042	17.8718	5.5	6
41	99P Kowal	2007	1	27.2463	0.229783	4.732823	174.2474	28.2479	4.3327	4.5	6
42	100P Hartley	2009	12	6.1406	0.418754	1.982377	181.7049	37.8476	25.6527	9	8
43	110P Hartley	2008	2	3.1773	0.312487	2.487409	167.7069	287.7388	11.6791	1	12
44	113P Spitaler	2008	3	23.3787	0.423255	2.127804	49.8243	14.4619	5.7762	13.5	4
45	116P Wild	2009	7	18.8676	0.374617	2.174942	173.5919	21.0335	3.6129	2.5	10
46	117P Helin-Roman-Alu	2005	12	21.0788	0.255423	3.04239	222.9909	58.9391	8.7034	2.5	8
47	118P Shoemaker-Levy	2010	1	2.3171	0.427227	1.984014	302.1383	151.8073	8.5094	12	4
48	119P Parker-Hartley	2005	5	22.6848	0.290508	3.039586	181.1136	244.0744	5.1905	3.5	8
49	124P Mrkos	2008	4	27.3311	0.542493	1.469458	181.4997	1.2852	31.3603	13.5	2.8
50	126P IRAS	2010	2	22.8394	0.696401	1.7133	356.7469	357.7654	45.8278	6	8
51	127P Holt-Olmstead	2009	10	21.3259	0.362704	2.195724	6.5239	13.6877	14.3194	11	6
52	128P Shoemaker-Holt	2007	6	13.3448	0.320257	3.0666	210.3766	214.3784	4.3566	8.5	4
53	131P Mueller	2012	1	8.3197	0.342517	2.419686	179.6422	214.218	7.354	11	4
54	136P Mueller	2007	10	22.6772	0.293483	2 961155	224 9585	137,5513	9.4277	11	4
55	1					2.001100					
- 55	137P Shoemaker-Levy	2009	5	13.5701	0.574498	1.915285	140.813	233.1209	4.8537	11	4
56	137P Shoemaker-Levy 139P Vaisala-Oterma	2009 2008	5	13.5701 19.4574	0.574498 0.247039	1.915285	140.813 165.5401	233.1209 242.4436	4.8537 2.329	11 9.5	4
56 57	137P Shoemaker-Levy 139P Vaisala-Oterma 142P Ge-Wang	2009 2008 2010	5 4 5	13.5701 19.4574 31.032	0.574498 0.247039 0.49931	1.915285 3.402648 2.487014	140.813 165.5401 175.853	233.1209 242.4436 176.5414	4.8537 2.329 12.3014	11 9.5 8.5	4
56 57 58	137P Shoemaker-Levy 139P Vaisala-Oterma 142P Ge-Wang 143P Kowal-Mrkos	2009 2008 2010 2009	5 4 5 6	13.5701 19.4574 31.032 12.1982	0.574498 0.247039 0.49931 0.409802	1.915285 3.402648 2.487014 2.538199	140.813 165.5401 175.853 320.7603	233.1209 242.4436 176.5414 245.3684	4.8537 2.329 12.3014 4.6899	11 9.5 8.5 13.5	4 4 6 2
56 57 58 59	137P Shoemaker-Levy 139P Vaisala-Oterma 142P Ge-Wang 143P Kowal-Mrkos 144P Kushida	2009 2008 2010 2009 2009	5 4 5 6	13.5701 19.4574 31.032 12.1982 26.8501	0.574498 0.247039 0.49931 0.409802 0.627795	1.915285 3.402648 2.487014 2.538199 1.438946	140.813 165.5401 175.853 320.7603 216.0919	233.1209 242.4436 176.5414 245.3684 245.5568	4.8537 2.329 12.3014 4.6899 4.1092	11 9.5 8.5 13.5 8.5	4 4 6 2 8
56 57 58 59 60	137P Shoemaker-Levy 139P Vaisala-Oterma 142P Ge-Wang 143P Kowal-Mrkos 144P Kushida 145P Shoemaker-Levy	2009 2008 2010 2009 2009 2009	5 4 5 6 1 3	13.5701 19.4574 31.032 12.1982 26.8501 26.6162	0.574498 0.247039 0.49931 0.409802 0.627795 0.542157	1.915285 3.402648 2.487014 2.538199 1.438946 1.891352	140.813 165.5401 175.853 320.7603 216.0919 10.1421	233.1209 242.4436 176.5414 245.3684 245.5568 26.9025	4.8537 2.329 12.3014 4.6899 4.1092 11.2992	11 9.5 8.5 13.5 8.5 13.5	4 6 2 8
56 57 58 59 60 61	137P Shoemaker-Levy 139P Vaisala-Otema 142P Ge-Wang 143P Kowal-Mrkos 144P Kushida 145P Shoemaker-Levy 147P Kushida-Muramatsu	2009 2008 2010 2009 2009 2009 2009 2008	5 4 5 6 1 3 9	13.5701 19.4574 31.032 12.1982 26.8501 26.6162 22.8809	0.574498 0.247039 0.49931 0.409802 0.627795 0.542157 0.27611	1.915285 3.402648 2.487014 2.538199 1.438946 1.891352 2.756234	140.813 165.5401 175.853 320.7603 216.0919 10.1421 346.8579	233.1209 242.4436 176.5414 245.3684 245.5568 26.9025 93.7395	4.8537 2.329 12.3014 4.6899 4.1092 11.2992 2.3671	11 9.5 8.5 13.5 8.5 13.5 13.5 14	4 4 2 8 4 4
56 57 58 59 60 61 62	137P Shoemaker-Levy 139P Vaisala-Oterma 142P Ge-Wang 143P Kowal-Mrkos 144P Kushida 145P Shoemaker-Levy 147P Kushida-Muramatsu 147P Kushida-Muramatsu 148P Anderson-LINEAR	2009 2008 2010 2009 2009 2009 2008 2008	5 4 5 6 1 3 9 5	13.5701 19.4574 31.032 12.1982 26.8501 26.6162 22.8809 22.7006	0.574498 0.247039 0.49931 0.409802 0.627795 0.542157 0.27611 0.537838	1.915285 3.402648 2.487014 2.538199 1.438946 1.891352 2.756234 1.702227	140.813 165.5401 175.853 320.7603 216.0919 10.1421 346.8579 6.6478	233.1209 242.4436 176.5414 245.3684 245.5568 26.9025 93.7395 89.7988	4.8537 2.329 12.3014 4.6899 4.1092 11.2992 2.3671 3.6784	11 9.5 8.5 13.5 8.5 13.5 13.5 14 14	4 6 22 8 4 4 2
56 57 58 59 60 61 62 63	137P Shoemaker-Levy 139P Vaisala-Oterma 142P Ge-Wang 143P Kowal-Mrkos 144P Kushida 145P Shoemaker-Levy 147P Kushida-Muramatsu 148P Anderson-LINEAR 149P Mueller	2009 2008 2010 2009 2009 2009 2008 2008 2008 2010	5 4 5 6 1 3 9 5 2	13.5701 19.4574 31.032 12.1982 26.8501 26.6162 22.8809 22.7006 19.2809	0.574498 0.247039 0.49931 0.409802 0.627795 0.542157 0.27611 0.537838 0.38863	1.915285 3.402648 2.487014 2.538199 1.438946 1.891352 2.756234 1.702227 2.650716	140.813 165.5401 175.853 320.7603 216.0919 10.1421 346.8579 6.6478 43.7897	233.1209 242.4436 176.5414 245.3684 245.5568 26.9025 93.7395 89.7988 145.2662	4.8537 2.329 12.3014 4.6899 4.1092 11.2992 2.3671 3.6784 29.7354	11 9.5 8.5 13.5 8.5 13.5 13.5 14 16 8	4 6 2 8 4 4 2 8

GTONOVA Asteriod List

for 8405

No.	Name	Year	Month	Day	М	а	е	ω	Ω	i	H	G
1	Ceres	2008	11	30	344.5453	2.766792	0.079475	72.8956	80.4045	10.5857	3.34	0.12
2	Pallas	2008	11	30	327.9744	2.77265	0.230878	310.2565	173.1321	34.8377	4.13	0.11
3	Juno	2008	11	30	256.8166	2.672153	0.255933	247.9335	169.9608	12.968	5.33	0.32
4	Vesta	2008	11	30	144.8639	2.361269	0.089055	149.8554	103.9148	7.1352	3.2	0.32
5	Astraea	2008	11	30	97.0412	2.573519	0.192256	357.5568	141.6733	5.3691	6.85	0.15
6	Hebe	2008	11	30	174.9948	2.424804	0.202221	239.4972	138.7389	14.754	5.71	0.24
7	Iris	2008	11	30	204.0208	2.384906	0.231427	145.2963	259.7192	5.5274	5.51	0.15
8	Flora	2008	11	30	127.9925	2.201234	0.15659	285.4267	110.9601	5.8891	6.49	0.28
9	Metis	2008	11	30	340.9833	2.386203	0.121977	6.3177	68.9614	5.5748	6.28	0.17
10	Hygiea	2008	11	30	197.9649	3.138648	0.117332	313.1924	283.4507	3.8422	5.43	0.15
11	Parthenope	2008	11	30	24.7386	2.452451	0.099693	194.7959	125.6097	4.6264	6.55	0.15
12	Victoria	2008	11	30	162.874	2.33469	0.220269	69.6765	235.531	8.3623	7.24	0.22
13	Egeria	2008	11	30	1.7704	2.576374	0.08588	80.7823	43.2844	16.5416	6.74	0.15
14	Irene	2008	11	30	346.0152	2.585491	0.16756	96.306	86.4552	9.1069	6.3	0.15
15	Eunomia	2008	11	30	132.5299	2.643423	0.187649	97.8333	293.2659	11.7384	5.28	0.23
16	Psyche	2008	11	30	260.2872	2.920993	0.13925	227.4924	150.325	3.096	5.9	0.2
17	Thetis	2008	11	30	59.2784	2.470101	0.134917	135.8301	125.5998	5.589	7.76	0.15
18	Melpomene	2008	11	30	270.5753	2.295635	0.218678	227.8463	150.5229	10.1268	6.51	0.25
19	Fortuna	2008	11	30	296.078	2.443171	0.15795	181.8835	211.2813	1.5721	7.13	0.1
20	Massalia	2008	11	30	196.7074	2.411074	0.141797	255.9576	206.3904	0.7063	6.5	0.25
21	Lutetia	2008	11	30	78.6783	2.435445	0.162944	250.0326	80.912	3.0641	7.35	0.11
22	Kalliope	2008	11	30	162.5628	2.907406	0.102782	355.7259	66.2278	13.7112	6.45	0.21
23	Thalia	2008	11	30	176.0898	2.630841	0.232993	59.9907	67.118	10.1185	6.95	0.15
24	Themis	2008	11	30	39.6102	3.129503	0.131562	107.8254	35.991	0.7595	7.08	0.19
25	Phocaea	2008	11	30	245.3675	2 399863	0.255762	90,261	214.2438	21,5831	7.83	0.15
26	Proserpina	2008	11	30	320.0877	2,65561	0.086669	193,5194	45.87	3.5617	7.5	0.15
27	Euterpe	2008	11	30	13,121	2.346729	0.172864	356,8066	94,8057	1.5837	7	0.15
28	Bellona	2008	11	30	184,1954	2,78127	0.148745	343,7149	144,3457	9,4233	7.09	0.15
29	Amphitrite	2008	11	30	87,1578	2,554712	0.072951	63,2084	356,4852	6.0961	5.85	0.2
30	Urania	2008	11	30	79 8986	2 365855	0 126799	87 0183	307 7439	2 0987	7 57	0.15
31	Fuphrosyne	2008	11	30	138 0881	3 148599	0 225332	61,9397	31 2316	26 3152	6.74	0.15
32	Pomona	2008	11	30	212 5172	2 586608	0.082978	339 1133	220 5602	5 5293	7.56	0.15
33	Polyhymnia	2008	11	30	291.3457	2.864372	0.338273	338.2115	8.5843	1.871	8.55	0.33
34	Circe	2008	11	30	357.3366	2.686037	0.108253	329.9188	184.5186	5.5028	8.51	0.15
35	Leukothea	2008	11	30	210.9581	2.990727	0.227795	213.9588	353.8097	7.9351	8.5	0.15
36	Atalante	2008	11	30	198.7502	2.745856	0.303496	47.0352	358.4703	18.4346	8.46	0.15
37	Fides	2008	11	30	190.2175	2.641461	0.176024	62.5955	7.3927	3.073	7.29	0.24
38	Leda	2008	11	30	258.4882	2.739764	0.153551	169.6907	295.793	6.9731	8.32	0.15
39	Laetitia	2008	11	30	208.1856	2.767148	0.114802	209.4385	157.1627	10.3862	6.1	0.15
40	Harmonia	2008	11	30	90.4497	2.267479	0.046348	269.7366	94.2864	4.2566	7	0.15
41	Daphne	2008	11	30	37.4718	2.765469	0.272064	46.3609	178.1346	15.7666	7.12	0.1
42	Isis	2008	11	30	302.7259	2.441053	0.22337	236.6529	84.3936	8.5296	7.53	0.15
43	Ariadne	2008	11	30	73.2044	2.202968	0.168091	15.8319	264.9291	3.4677	7.93	0.11
44	Nysa	2008	11	30	170.7123	2.425341	0.147657	342.7508	131.5792	3.7041	7.03	0.46
45	Eugenia	2008	11	30	286.3938	2.720994	0.081644	85.5622	147.9191	6.6099	7.46	0.07
46	Hestia	2008	11	30	217.3722	2.524407	0.172783	176.8484	181.1561	2.3432	8.36	0.06
47	Aglaja	2008	11	30	6.8168	2.879575	0.135015	314.043	3.1473	4.9838	7.84	0.16
48	Doris	2008	11	30	102.4412	3.108642	0.074784	257.133	183.7354	6.5555	6.9	0.15
49	Pales	2008	11	30	274.6896	3.09392	0.230324	109.804	286.1346	3.1802	7.8	0.15
50	Virginia	2008	11	30	10.6337	2.651387	0.283688	200.0845	173.6319	2.8324	9.24	0.15
51	Nemausa	2008	11	30	145.8796	2.365855	0.06723	3.2243	176.0995	9.9753	7.35	0.08
52	Europa	2008	11	30	269.0613	3.094958	0.105853	344.0615	128.7541	7.4816	6.31	0.18
53	Kalypso	2008	11	30	259.669	2.618282	0.204793	313.3827	143.5885	5.1684	8.81	0.15
54	Alexandra	2008	11	30	258.1198	2.711412	0.196803	345.7216	313.437	11.8071	7.66	0.15
55	Pandora	2008	11	30	265.9608	2.759307	0.144664	3.9396	10.5166	7.1839	7.8	0.15
56	Melete	2008	11	30	72.9013	2.595268	0.237971	103.5363	193.4492	8.0701	8.31	0.15
57	Mnemosyne	2008	11	30	191.8584	3.147948	0.118166	212.5563	199.3297	15.2023	7.03	0.15
58	Concordia	2008	11	30	171.8732	2.698995	0.044675	33.2036	161.1913	5.0605	8.86	0.15
59	Elpis	2008	11	30	40.6966	2.713766	0.116815	211.4276	170.1613	8.6326	7.93	0.15
60	Echo	2008	11	30	276.6632	2.392828	0.183056	271.1452	191.6475	3.6011	8.21	0.27
61	Danae	2008	11	30	263.5451	2.980351	0.168521	13.751	333.7722	18.2254	7.68	0.15
62	Erato	2008	11	30	286.4868	3.130932	0.173412	273.2412	125.5826	2.229	8.76	0.15
63	Ausonia	2008	11	30	209.2939	2.395977	0.12571	295.8189	337.8964	5,7856	7.55	0.25
64	Angelina	2008	11	30	264,9106	2.681069	0.125643	179.5963	309,2127	1.31	7.67	0.48